The content of this website is no longer being updated. For information on current assessment activities, please visit http://www.globalchange.gov/what-we-do/assessment
Multi-gas Emissions Pathways to Meet Climate Targets
Title | Multi-gas Emissions Pathways to Meet Climate Targets |
Publication Type | Journal Article |
Year of Publication | 2006 |
Authors | Meinshausen, M., B. Hare, T. M. L. Wigley, D. Van Vuuren, M. G. J. den Elzen, and R. Swart |
Journal | Climatic Change |
Volume | 75 |
Issue | 1 |
Pagination | 151-194 |
Date Published | MAR 2006 |
ISBN Number | 0165-0009 |
Keywords | ANTARCTIC ICE-SHEET, atmospheric co2, carbon, CONSEQUENCES, GLOBAL WARMING POTENTIALS, PROJECTIONS, sea-level, STABILIZATION, UNCERTAINTIES, vegetation |
Abstract | So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method 'Equal Quantile Walk' (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by 'walking along equal quantile paths' of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 degrees C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See www.simcap.org for EQW-software and data. |
DOI | DOI 10.1007/s10584-005-9013-2 |
Reference number | 89 |
Short Title | Multi-gas Emissions Pathways to Meet Climate Targets |
Citation Key | 89 |